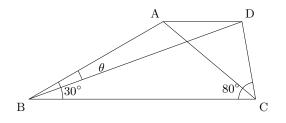
【角度の問題】問題 14-

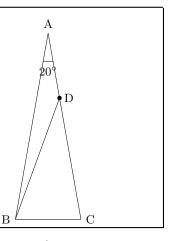
問 AD // BC の台形 ABCD, AD = CD です。 ∠ABD を求めよ。



『高校への数学-1999年10月号』(東京出版)より

最初に【ラングレーの類題】問題7を証明する。

- 【ラングレーの類題】問題 7 -



ラングレーの類題7の解答

図のように、BC を一辺とする正三角形をつくり、その頂点を E とする。

△ABD と △BAE は

 $AB = BA(共通) \cdots (1)$

AD = BC, BE = BC から

 $AD = BE \cdots (2)$

 $\angle BAD = 20^{\circ}$, $\angle ABE = 80^{\circ} - 60^{\circ} = 20^{\circ}$ から

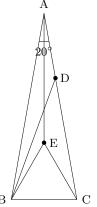
 $\angle BAD = \angle ABE \cdots 3$

2 辺とその間の角が相等しいので、 $\triangle ABD \equiv \triangle BAE$

直線 AE は線分 BC の垂直二等分線であるから,

$$\angle ABD = \angle BAE = \frac{1}{2} \angle BAC = 10^{\circ}$$

 $\angle BDC = 20^{\circ} + 10^{\circ} = 30^{\circ}$



問題 14 の解答

 $\overline{\text{Ap}}$ BC 上に BE = AD となる点 E をとると,

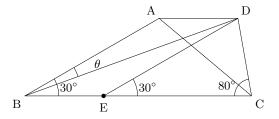
四角形 ABED は平行四辺形である。

BE = CD, \angle CED = 30° であるから,

ラングレーの類題7の結果から

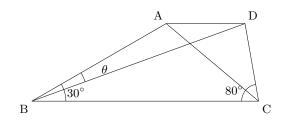
 $\angle DBC = 20^{\circ}$

 $\angle ABD = 30^{\circ} - 20^{\circ} = 10^{\circ}$



【角度の問題】問題 14 -

問 AD // BC の台形 ABCD,AD = CD です。 ∠ABD を求めよ。



『高校への数学-1999年10月号』(東京出版)より

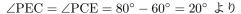
【求め方2】

線分 BC 上に BE = AD となる点 E をとると,

四角形 ABED は平行四辺形である。

 \triangle CDE の外接円の中心を P とすると、 \angle CED = 30° であるから、 \angle CPD = 60°

ゆえに \triangle CPD は正三角形だから PD = PE = CD = BE $_{
m B}$ である。



$$\angle BEP = 180^{\circ} - 20^{\circ} = 160^{\circ}$$

$$\angle EPD = 2\angle ECD = 160^{\circ}$$

したがって、四角形 BEPD は等脚台形である。

よって、
$$\angle DBE = \angle PEC = 20^{\circ}$$

以上より $\theta = 30^{\circ} - 20^{\circ} = \mathbf{10}^{\circ}$

線分 CB 上に CE = CD となる点 E をとると,

四角形 AECD は菱形である。

 \triangle ABE の外接円の中心を P とすると、 \angle ABE = 30° であるから、 \angle APE = 60°

ゆえに $\triangle APE$ は正三角形だから AP = AD である。

$$\angle PAD = 60^{\circ} + 80^{\circ} = 140^{\circ} \text{ \sharp 9 $\angle APD} = 20^{\circ}$$

 $\sharp \,$ t, $\angle APB = 2\angle AEB = 160^{\circ}$

 $\angle APD + \angle APB = 180^{\circ}$ であるから, 点 P は直線 BD 上にある。

以上より
$$\theta = \frac{1}{2} \angle APD = \mathbf{10}^{\circ}$$

