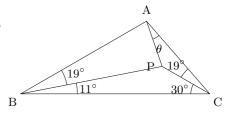
· 整角三角形 T(19,11,30,19) ·

| 問 | △ABC の内部に点 P を

 $\overline{\angle PBA} = 19^{\circ}$, $\angle PBC = 11^{\circ}$, $\angle PCB = 30^{\circ}$, $\angle PCA = 19^{\circ}$ となるようにとるとき、 $\angle PAC$ の大きさを求めよ。



 $\triangle ABC$ の外心を Q とすると、QA = QB = QC

 $\angle AQC = 2\angle ABC = 60^{\circ}$

より、△AQC は正三角形である。

 \angle CBQ = \angle BCQ = 60° - $(30^{\circ} + 19^{\circ})$ = 11° = \angle CBP 辺 BQ の延長線上に BR = BP となる点 R をとると 2 辺と夾角相等より \triangle BRC = \triangle BPC である。

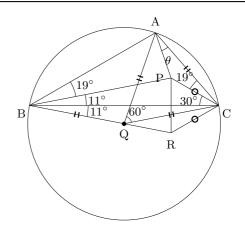
CP = CR, $\angle PCR = 2\angle PCB = 60^{\circ}$

よって、△CPR は正三角形である。

 $\triangle AQC$ と $\triangle CPR$ がともに正三角形であるから

 $\triangle PAC \equiv \triangle RQC$

 $\angle PAC = \angle RQC = 2\angle RBC = 22^{\circ}$



【予備知識】

一般に, $a+b=30^{\circ}$, $c=30^{\circ}$, d=a の関係が成り立つとき, e=2b である。

a	b	c	d	e	a	b	c	d	e	a	b	c	d	e
1	29	30	1	58	11	19	30	11	38	21	9	30	21	18
2	28	30	2	56	12	18	30	12	36	22	8	30	22	16
3	27	30	3	54	13	17	30	13	34	23	7	30	23	14
4	26	30	4	52	14	16	30	14	32	24	6	30	24	12
5	25	30	5	50	15	15	30	15	30	25	5	30	25	10
6	24	30	6	48	16	14	30	16	28	26	4	30	26	8
7	23	30	7	46	17	13	30	17	26	27	3	30	27	6
8	22	30	8	44	18	12	30	18	24	28	2	30	28	4
9	21	30	9	42	19	11	30	19	22	29	1	30	29	2
10	20	30	10	40	20	10	30	20	20					